Mathematical Methods for Analysis of
 Composite Quantum Systems with Infinite-dimensional State Spaces

Nicholas Wheeler, Reed College Physics Department
Spring 2009

Introduction. Yoshihisa Yamamoto \& Ataç İmamağlu, in §1.3.4 of their Mesoscopic Quantum Optics (1999), discuss aspects of the quantum theory of system/probe interaction in language that considers system and probe (or measurement device/meter) to be component parts of a composite system, and that assumes both system and probe are rich enough to support definitions of "conjugate observables" that satisfy $[\mathbf{q}, \mathbf{p}]=i \hbar \mathbf{l}$. An implication of the latter assumption is that the state spaces \mathcal{H}_{s} and \mathcal{H}_{m} of system and probe are, of necessity, infinite-dimensional. We must therefore sacrifice a simplifying assumption standard to the quantum theory of composite systems; namely, that all relevant state spaces-all vectors and matrices-are finite-dimensional. We therefore lose the Kronecker product. My objective here is to develop the mathematical resources that permit us to live with that loss.

Tensor products in the infinite-dimensional case. Familiarly,

$$
\binom{a_{1}}{a_{2}} \otimes\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{1} b_{1} \\
a_{1} b_{2} \\
a_{1} b_{3} \\
a_{2} b_{1} \\
a_{2} b_{2} \\
a_{2} b_{3}
\end{array}\right)
$$

where on the right we see components of \boldsymbol{a} joined with components of \boldsymbol{b} in all possible ways, and the population of such products presented in a specific order. It is the latter convention that becomes unworkable - must be sacrificed-if either \boldsymbol{a} or \boldsymbol{b} is ∞-dimensional.

Let vectors $\{\mid s)\}$ comprise an orthonormal basis in \mathcal{H}_{s}, and $\left.\{\mid m)\right\}$ comprise an orthonormal basis in \mathcal{H}_{m}. Then every $\left.\mid a\right)$ in \mathcal{H}_{s} can be developed

$$
\left.\mid a)=\sum a_{s} \mid s\right) \quad \text { with } \quad a_{s}=(s \mid a)
$$

and every $\mid b)$ in \mathcal{H}_{m} can be developed

$$
\left.\mid b)=\sum b_{m} \mid m\right) \quad \text { with } \quad b_{m}=(m \mid b)
$$

We stipulate that $\mathcal{H}_{s} \otimes \mathcal{H}_{m}$ is an inner product space, with induced inner product structure

$$
((a|\otimes(b \mid)(\mid c) \otimes| d))=(a \mid c) \cdot(b \mid d)
$$

Then

$$
((r|\otimes(m \mid)(\mid s) \otimes| n))=(r \mid s) \cdot(m \mid n)=\left\{\begin{array}{l}
\delta_{r s} \cdot \delta_{m n} \\
\delta(r-s) \cdot \delta(m-n)
\end{array}\right.
$$

establishes the orthonormality of the basis vectors

$$
\mid s, m) \equiv \mid s) \otimes \mid m) \quad: \quad \text { elements of } \mathcal{H} \equiv \mathcal{H}_{s} \otimes \mathcal{H}_{m}
$$

and

$$
\left.\left.\sum_{s, m} \mid s, m\right)\left(s, m\left|=\sum_{s, m}(\mid s) \otimes\right| m\right)\right)\left(\left(s \mid \otimes(m \mid)=\mathbf{I} \equiv \mathbf{I}_{s} \otimes \mathbf{I}_{m}\right.\right.
$$

establishes their completeness.
If $\mid \psi)$ and $|\phi\rangle$ describe the quantum state of system/meter respectively, then

$$
\left.\left.|\Psi\rangle=\mid \psi) \otimes|\phi\rangle=\sum_{s, m}(\mid s) \otimes \mid m\right)\right) \psi_{s} \phi_{m}
$$

where $\psi_{s}=(s \mid \psi)$ and $\phi_{m}=(m \mid \phi)$. But the state of the composite system has more generally to be described

$$
\left.\left.\mid \Psi)=\sum_{s, m}(\mid s) \otimes \mid m\right)\right) \Psi_{s, m}
$$

where $\Psi_{s, m}=(s, m \mid \Psi)$. The state of the composite system is "entangled" unless- exceptionally-the numbers $\Psi_{s, m}$ can be factored: $\Psi_{s, m}=\psi_{s} \phi_{m}$.

Passing to density matrix language, we write

$$
\left.\boldsymbol{\rho}_{s}=\mid \psi\right)\left(\psi\left|=\sum_{r, s} \psi_{r}\right| r\right)\left(s \mid \psi_{s}^{*}\right.
$$

to describe the disentangled pure state of the system, and a similar expression to describe the disentangled pure state $\left.\boldsymbol{\rho}_{m}=\mid \phi\right)(\phi \mid$ of the probe. Observe that

$$
\begin{aligned}
\boldsymbol{\rho}_{s} \cdot \boldsymbol{\rho}_{s} & \left.=\sum_{r, s} \sum_{r^{\prime}, s^{\prime}} \psi_{r} \mid r\right)\left(s\left|\psi_{s}^{*} \psi_{r^{\prime}}\right| r^{\prime}\right)\left(s^{\prime} \mid \psi_{s^{\prime}}^{*}\right. \\
& \left.=\sum_{r, s} \sum_{s^{\prime}} \psi_{r} \mid r\right) \psi_{s}^{*} \psi_{s}\left(s^{\prime} \mid \psi_{s^{\prime}}^{*}\right. \\
& \left.=\sum_{r} \sum_{s^{\prime}} \psi_{r} \mid r\right)\left(s^{\prime} \mid \psi_{s^{\prime}}^{*} \quad \text { by } \quad \sum \psi_{s}^{*} \psi_{s}=1\right. \\
& =\boldsymbol{\rho}_{s}
\end{aligned}
$$

and

$$
\operatorname{tr} \boldsymbol{\rho}_{s}=\sum_{q} \sum_{r, s} \psi_{r}(q \mid r)(s \mid q) \psi_{s}^{*}=\sum_{q} \psi_{q} \psi_{q}^{*}=1
$$

and that both statements are immnediate if one works from $\left.\boldsymbol{\rho}_{s}=\mid \psi\right)(\psi \mid$.
If the system and probe are only "mentally conjoined" (their respective quantum states disentangled) the density operator of the conjoint systems is

$$
\begin{aligned}
\boldsymbol{\rho} & \left.\left.=\left(\sum \psi_{r} \phi_{m} \mid r\right) \otimes \mid m\right)\right) \cdot\left(\sum \left(s \mid \otimes\left(n \mid \psi_{s}^{*} \phi_{n}^{*}\right)\right.\right. \\
& =\left(\sum \psi_{r} \mid r\right)\left(s \mid \psi_{s}^{*}\right) \otimes\left(\sum \phi_{m} \mid m\right)\left(n \mid \phi_{n}^{*}\right) \\
& =\boldsymbol{\rho}_{s} \otimes \boldsymbol{\rho}_{m}
\end{aligned}
$$

We can recover either factor by using the partial trace to "reduce" $\boldsymbol{\rho}$ by "tracing out" the unwanted factor:

$$
\begin{aligned}
\operatorname{tr}_{1} \boldsymbol{\rho} & \equiv \underbrace{\sum_{q}\left(\left(q \mid \otimes \mathbf{I}_{m}\right) \boldsymbol{\rho}(\mid q) \otimes \mathbf{I}_{m}\right)}_{1} \\
& =\underbrace{\left(\sum_{q} \sum_{r s} \psi_{r}(q \mid r)(s \mid q) \mid \psi_{s}^{*}\right)}_{\boldsymbol{\rho}_{m}} \otimes \underbrace{\left(\sum_{m n} \phi_{m} \mid m\right)\left(n \mid \phi_{n}^{*}\right)} \\
& =\boldsymbol{\rho}_{m} \\
\operatorname{tr}_{2} \boldsymbol{\rho} & \equiv \sum_{p}\left(\mathbf{I}_{s} \otimes(p \mid) \boldsymbol{\rho}\left(\mathbf{I}_{s} \otimes \mid p\right)\right) \\
& =\boldsymbol{\rho}_{s}
\end{aligned}
$$

The partial trace concept remains in force (and acquires special importance) even when the state of the $\boldsymbol{\rho}$ of the composite system is mixed or entangled. One then has

$$
\left.\left.\boldsymbol{\rho}=\sum \rho_{r m ; s n}(\mid r) \otimes \mid m\right)\right) \cdot((s \mid \otimes(n \mid)
$$

with $\rho_{r m, s n}^{*}=\rho_{s n ; r m}$ and $\sum_{r m} \rho_{r m ; r m}=1$ and defines

$$
\begin{aligned}
\operatorname{tr}_{1} \boldsymbol{\rho} & \equiv \sum_{p}\left(\left(p \mid \otimes \mathbf{I}_{m}\right) \boldsymbol{\rho}(\mid p) \otimes \mathbf{I}_{m}\right) \\
& \left.=\sum_{p} \sum_{m n} \rho_{p m ; p n} \mid m\right)(n \mid \\
\operatorname{tr}_{2} \boldsymbol{\rho} & \equiv \sum_{q}\left(\mathbf{I}_{s} \otimes(q \mid) \boldsymbol{\rho}\left(\mathbf{I}_{s} \otimes \mid q\right)\right) \\
& \left.=\sum_{q} \sum_{r s} \rho_{r q ; s q} \mid r\right)(s \mid
\end{aligned}
$$

Clearly

$$
\operatorname{tr} \boldsymbol{\rho}=\operatorname{tr}\left(\operatorname{tr}_{1} \boldsymbol{\rho}\right)=\operatorname{tr}\left(\operatorname{tr}_{2} \boldsymbol{\rho}\right)=\sum_{p q} \rho_{p q ; p q}=1
$$

The operators $\boldsymbol{\rho}$,

$$
\begin{aligned}
& \mathbf{S}\left.\equiv \operatorname{tr}_{2} \boldsymbol{\rho}=\sum_{q} \sum_{r s} \rho_{r q ; s q} \mid r\right)(s \mid \\
&\left.\mathbf{M} \equiv \operatorname{tr}_{1} \boldsymbol{\rho}=\sum_{p} \sum_{m n} \rho_{p m ; p n} \mid m\right)(n \mid
\end{aligned}
$$

are self-adjoint, so can be brought to diagonal (spectral representative) form

$$
\begin{aligned}
& \boldsymbol{\rho}\left.=\sum_{u} \mid R_{u}\right) R_{u}\left(R_{u} \mid\right. \\
& \mathbf{S}\left.=\sum_{i} \mid S_{i}\right) S_{i}\left(S_{i} \mid\right. \\
& \mathbf{M}\left.=R_{u}\right) \text { live in } \mathcal{H}_{s} \otimes \mathcal{H}_{m} \\
&\left.\mid M_{j}\right) M_{j}\left(M_{j} \mid\right.: \\
&\left.\mid M_{j}\right) \text { live in } \mathcal{H}_{s} \\
&
\end{aligned}
$$

by unitary transformation. One has

$$
\begin{gathered}
\operatorname{tr} \mathrm{S}=\sum_{i} S_{i}=1 \\
\operatorname{tr} \mathrm{~S}^{2}=\sum_{i} S_{i}^{2}=\sum_{p q} \sum_{r S} \rho_{r p ; s p} \rho_{s q ; r q} \leqslant 1
\end{gathered}
$$

and can say similar things about $\operatorname{tr} \mathrm{M}$ and $\operatorname{tr} \mathrm{M}^{2}$.
If we had had the foresight to work in the eigenbases of the reduced density matrices \mathbf{S} and \mathbf{M} we would have had

$$
\left.\left.\boldsymbol{\rho}=\sum_{i j k l} R_{i k ; j l}\left(\mid S_{i}\right) \otimes \mid M_{k}\right)\right) \cdot\left(\left(S_{j} \mid \otimes\left(M_{l} \mid\right)\right.\right.
$$

which if $\boldsymbol{\rho}$ referred to a disentangled pure state of the composite system would have assumed the form

$$
\begin{aligned}
& =\left(\sum_{i} S_{i} \mid S_{i}\right)\left(S_{i} \mid\right) \otimes\left(\sum_{k} M_{k} \mid M_{k}\right)\left(M_{k} \mid\right) \\
& \left.\left.=\sum_{i k} S_{i} M_{k}\left(\mid S_{i}\right) \otimes \mid M_{k}\right)\right) \cdot\left(\left(S_{i} \mid \otimes\left(M_{k} \mid\right)\right.\right.
\end{aligned}
$$

which would entail $R_{i k ; j l}=S_{i} M_{k} \delta_{i j} \delta_{k l}$.

